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1.1 Solutions and Elementary Operations

Practical problems in many fields of study—such as biology, business, chemistry, computer science,
economics, electronics, engineering, physics and the social sciences—can often be reduced to solving
a system of linear equations. Linear algebra arose from attempts to find systematic methods for
solving these systems, so it is natural to begin this book by studying linear equations.

If a, b, and c are real numbers, the graph of an equation of the form

ax+by = c

is a straight line (if a and b are not both zero), so such an equation is called a linear equation
in the variables x and y. However, it is often convenient to write the variables as x1, x2, . . . , xn,
particularly when more than two variables are involved. An equation of the form

a1x1 +a2x2 + · · ·+anxn = b

is called a linear equation in the n variables x1, x2, . . . , xn. Here a1, a2, . . . , an denote real numbers
(called the coefficients of x1, x2, . . . , xn, respectively) and b is also a number (called the constant
term of the equation). A finite collection of linear equations in the variables x1, x2, . . . , xn is called
a system of linear equations in these variables. Hence,

2x1 −3x2 +5x3 = 7

is a linear equation; the coefficients of x1, x2, and x3 are 2, −3, and 5, and the constant term is 7.
Note that each variable in a linear equation occurs to the first power only.

Given a linear equation a1x1 + a2x2 + · · ·+ anxn = b, a sequence s1, s2, . . . , sn of n numbers is
called a solution to the equation if

a1s1 +a2s2 + · · ·+ansn = b

that is, if the equation is satisfied when the substitutions x1 = s1, x2 = s2, . . . , xn = sn are made.
A sequence of numbers is called a solution to a system of equations if it is a solution to every
equation in the system.

For example, x =−2, y = 5, z = 0 and x = 0, y = 4, z =−1 are both solutions to the system

x+ y+ z= 3
2x+ y+ 3z= 1

A system may have no solution at all, or it may have a unique solution, or it may have an infinite
family of solutions. For instance, the system x + y = 2, x + y = 3 has no solution because the
sum of two numbers cannot be 2 and 3 simultaneously. A system that has no solution is called
inconsistent; a system with at least one solution is called consistent. The system in the following
example has infinitely many solutions.
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Example 1.1.1

Show that, for arbitrary values of s and t,

x1 = t − s+1
x2 = t + s+2
x3 = s
x4 = t

is a solution to the system
x1 − 2x2 +3x3 +x4 =−3

2x1 − x2 +3x3 −x4 = 0

Solution. Simply substitute these values of x1, x2, x3, and x4 in each equation.

x1 −2x2 +3x3 + x4 = (t − s+1)−2(t + s+2)+3s+ t =−3
2x1 − x2 +3x3 − x4 = 2(t − s+1)− (t + s+2)+3s− t = 0

Because both equations are satisfied, it is a solution for all choices of s and t.

The quantities s and t in Example 1.1.1 are called parameters, and the set of solutions, de-
scribed in this way, is said to be given in parametric form and is called the general solution to
the system. It turns out that the solutions to every system of equations (if there are solutions) can
be given in parametric form (that is, the variables x1, x2, . . . are given in terms of new independent
variables s, t, etc.). The following example shows how this happens in the simplest systems where
only one equation is present.

Example 1.1.2

Describe all solutions to 3x− y+2z = 6 in parametric form.

Solution. Solving the equation for y in terms of x and z, we get y = 3x+2z−6. If s and t
are arbitrary then, setting x = s, z = t, we get solutions

x = s
y = 3s+2t −6 s and t arbitrary
z = t

Of course we could have solved for x: x = 1
3(y−2z+6). Then, if we take y = p, z = q, the

solutions are represented as follows:

x = 1
3(p−2q+6)

y = p p and q arbitrary
z = q

The same family of solutions can “look” quite different!
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Figure 1.1.1

When only two variables are involved, the solutions to systems of
linear equations can be described geometrically because the graph of
a linear equation ax+by = c is a straight line if a and b are not both
zero. Moreover, a point P(s, t) with coordinates s and t lies on the
line if and only if as+bt = c—that is when x = s, y = t is a solution
to the equation. Hence the solutions to a system of linear equations
correspond to the points P(s, t) that lie on all the lines in question.

In particular, if the system consists of just one equation, there
must be infinitely many solutions because there are infinitely many
points on a line. If the system has two equations, there are three
possibilities for the corresponding straight lines:

1. The lines intersect at a single point. Then the system has a
unique solution corresponding to that point.

2. The lines are parallel (and distinct) and so do not intersect.
Then the system has no solution.

3. The lines are identical. Then the system has infinitely many
solutions—one for each point on the (common) line.

These three situations are illustrated in Figure 1.1.1. In each case
the graphs of two specific lines are plotted and the corresponding
equations are indicated. In the last case, the equations are 3x−y = 4
and −6x+2y =−8, which have identical graphs.

With three variables, the graph of an equation ax+ by+ cz = d
can be shown to be a plane (see Section 4.2) and so again provides
a “picture” of the set of solutions. However, this graphical method
has its limitations: When more than three variables are involved, no
physical image of the graphs (called hyperplanes) is possible. It is
necessary to turn to a more “algebraic” method of solution.

Before describing the method, we introduce a concept that sim-
plifies the computations involved. Consider the following system

3x1 + 2x2 − x3 + x4 =−1
2x1 − x3 + 2x4 = 0
3x1 + x2 + 2x3 + 5x4 = 2

of three equations in four variables. The array of numbers1 3 2 −1 1 −1
2 0 −1 2 0
3 1 2 5 2


occurring in the system is called the augmented matrix of the system. Each row of the matrix
consists of the coefficients of the variables (in order) from the corresponding equation, together

1A rectangular array of numbers is called a matrix. Matrices will be discussed in more detail in Chapter 2.



1.1. Solutions and Elementary Operations 9

with the constant term. For clarity, the constants are separated by a vertical line. The augmented
matrix is just a different way of describing the system of equations. The array of coefficients of the
variables  3 2 −1 1

2 0 −1 2
3 1 2 5


is called the coefficient matrix of the system and

 −1
0
2

 is called the constant matrix of the

system.

Elementary Operations

The algebraic method for solving systems of linear equations is described as follows. Two such
systems are said to be equivalent if they have the same set of solutions. A system is solved by
writing a series of systems, one after the other, each equivalent to the previous system. Each of
these systems has the same set of solutions as the original one; the aim is to end up with a system
that is easy to solve. Each system in the series is obtained from the preceding system by a simple
manipulation chosen so that it does not change the set of solutions.

As an illustration, we solve the system x+ 2y = −2, 2x+ y = 7 in this manner. At each stage,
the corresponding augmented matrix is displayed. The original system is

x+ 2y=−2
2x+ y= 7

[
1 2 −2
2 1 7

]
First, subtract twice the first equation from the second. The resulting system is

x+ 2y=−2
− 3y= 11

[
1 2 −2
0 −3 11

]
which is equivalent to the original (see Theorem 1.1.1). At this stage we obtain y =−11

3 by multi-
plying the second equation by −1

3 . The result is the equivalent system

x+2y= −2
y=−11

3

[
1 2 −2
0 1 −11

3

]
Finally, we subtract twice the second equation from the first to get another equivalent system.

x= 16
3

y=−11
3

 1 0 16
3

0 1 −11
3


Now this system is easy to solve! And because it is equivalent to the original system, it provides
the solution to that system.

Observe that, at each stage, a certain operation is performed on the system (and thus on the
augmented matrix) to produce an equivalent system.
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Definition 1.1 Elementary Operations

The following operations, called elementary operations, can routinely be performed on
systems of linear equations to produce equivalent systems.

I. Interchange two equations.

II. Multiply one equation by a nonzero number.

III. Add a multiple of one equation to a different equation.

Theorem 1.1.1
Suppose that a sequence of elementary operations is performed on a system of linear
equations. Then the resulting system has the same set of solutions as the original, so the
two systems are equivalent.

The proof is given at the end of this section.
Elementary operations performed on a system of equations produce corresponding manipulations

of the rows of the augmented matrix. Thus, multiplying a row of a matrix by a number k means
multiplying every entry of the row by k. Adding one row to another row means adding each entry
of that row to the corresponding entry of the other row. Subtracting two rows is done similarly.
Note that we regard two rows as equal when corresponding entries are the same.

In hand calculations (and in computer programs) we manipulate the rows of the augmented ma-
trix rather than the equations. For this reason we restate these elementary operations for matrices.

Definition 1.2 Elementary Row Operations

The following are called elementary row operations on a matrix.

I. Interchange two rows.

II. Multiply one row by a nonzero number.

III. Add a multiple of one row to a different row.

In the illustration above, a series of such operations led to a matrix of the form[
1 0 ∗
0 1 ∗

]
where the asterisks represent arbitrary numbers. In the case of three equations in three variables,
the goal is to produce a matrix of the form 1 0 0 ∗

0 1 0 ∗
0 0 1 ∗
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This does not always happen, as we will see in the next section. Here is an example in which it
does happen.

Example 1.1.3

Find all solutions to the following system of equations.

3x+ 4y+ z= 1
2x+ 3y = 0
4x+ 3y− z=−2

Solution. The augmented matrix of the original system is 3 4 1 1
2 3 0 0
4 3 −1 −2


To create a 1 in the upper left corner we could multiply row 1 through by 1

3 . However, the 1
can be obtained without introducing fractions by subtracting row 2 from row 1. The result is 1 1 1 1

2 3 0 0
4 3 −1 −2


The upper left 1 is now used to “clean up” the first column, that is create zeros in the other
positions in that column. First subtract 2 times row 1 from row 2 to obtain 1 1 1 1

0 1 −2 −2
4 3 −1 −2


Next subtract 4 times row 1 from row 3. The result is 1 1 1 1

0 1 −2 −2
0 −1 −5 −6


This completes the work on column 1. We now use the 1 in the second position of the
second row to clean up the second column by subtracting row 2 from row 1 and then adding
row 2 to row 3. For convenience, both row operations are done in one step. The result is 1 0 3 3

0 1 −2 −2
0 0 −7 −8


Note that the last two manipulations did not affect the first column (the second row has a
zero there), so our previous effort there has not been undermined. Finally we clean up the
third column. Begin by multiplying row 3 by −1

7 to obtain 1 0 3 3
0 1 −2 −2
0 0 1 8

7
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Now subtract 3 times row 3 from row 1, and then add 2 times row 3 to row 2 to get
1 0 0 −3

7

0 1 0 2
7

0 0 1 8
7


The corresponding equations are x =−3

7 , y = 2
7 , and z = 8

7 , which give the (unique) solution.

Every elementary row operation can be reversed by another elementary row operation of the
same type (called its inverse). To see how, we look at types I, II, and III separately:

Type I Interchanging two rows is reversed by interchanging them again.

Type II Multiplying a row by a nonzero number k is reversed by multiplying by 1/k.

Type III Adding k times row p to a different row q is reversed by adding −k times row p to
row q (in the new matrix). Note that p 6= q is essential here.

To illustrate the Type III situation, suppose there are four rows in the original matrix, denoted
R1, R2, R3, and R4, and that k times R2 is added to R3. Then the reverse operation adds −k times
R2, to R3. The following diagram illustrates the effect of doing the operation first and then the
reverse: 

R1
R2
R3
R4

→


R1
R2

R3 + kR2
R4

→


R1
R2

(R3 + kR2)− kR2
R4

=


R1
R2
R3
R4


The existence of inverses for elementary row operations and hence for elementary operations on a
system of equations, gives:
Proof of Theorem 1.1.1. Suppose that a system of linear equations is transformed into a new
system by a sequence of elementary operations. Then every solution of the original system is
automatically a solution of the new system because adding equations, or multiplying an equation
by a nonzero number, always results in a valid equation. In the same way, each solution of the new
system must be a solution to the original system because the original system can be obtained from
the new one by another series of elementary operations (the inverses of the originals). It follows
that the original and new systems have the same solutions. This proves Theorem 1.1.1.
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Exercises for 1.1

Exercise 1.1.1 In each case verify that the follow-
ing are solutions for all values of s and t.

a. x= 19t −35
y= 25−13t
z= t

is a solution of 2x+ 3y+ z= 5
5x+ 7y− 4z= 0

b. x1 = 2s+12t +13
x2 = s
x3 =−s−3t −3
x4 = t

is a solution of

2x1 + 5x2 + 9x3 + 3x4 =−1
x1 + 2x2 + 4x3 = 1

b. 2(2s+12t +13)+5s+9(−s−3t −3)+3t =−1;
(2s+12t +13)+2s+4(−s−3t −3) = 1

Exercise 1.1.2 Find all solutions to the following
in parametric form in two ways.

3x+ y = 2a) 2x+3y = 1b)
3x− y+2z = 5c) x−2y+5z = 1d)

b. x = t, y = 1
3(1−2t) or x = 1

2(1−3s), y = s

d. x = 1+2s−5t, y = s, z = t or x = s, y = t,
z = 1

5(1− s+2t)

Exercise 1.1.3 Regarding 2x = 5 as the equation
2x+0y= 5 in two variables, find all solutions in para-
metric form.

Exercise 1.1.4 Regarding 4x−2y = 3 as the equa-
tion 4x−2y+0z = 3 in three variables, find all solu-
tions in parametric form.
x = 1

4(3+2s), y = s, z = t

Exercise 1.1.5 Find all solutions to the gen-
eral system ax = b of one equation in one vari-
able (a) when a = 0 and (b) when a 6= 0.

a. No solution if b 6= 0. If b = 0, any x is a solu-
tion.

b. x = b
a

Exercise 1.1.6 Show that a system consisting of
exactly one linear equation can have no solution, one
solution, or infinitely many solutions. Give exam-
ples.

Exercise 1.1.7 Write the augmented matrix for
each of the following systems of linear equations.

x− 3y= 5
2x+ y= 1

a) x+ 2y= 0
y= 1

b)

x− y+ z= 2
x− z= 1
y+ 2x= 0

c) x+ y= 1
y+ z= 0
z− x= 2

d)

b.
[

1 2 0
0 1 1

]

d.

 1 1 0 1
0 1 1 0

−1 0 1 2


Exercise 1.1.8 Write a system of linear equations
that has each of the following augmented matrices. 1 −1 6 0

0 1 0 3
2 −1 0 1

a)

 2 −1 0 −1
−3 2 1 0

0 1 1 3

b)

b.
2x− y =−1

−3x+ 2y+ z= 0
y+ z= 3

or
2x1 − x2 =−1

−3x1 + 2x2 + x3 = 0
x2 + x3 = 3

Exercise 1.1.9 Find the solution of each of the fol-
lowing systems of linear equations using augmented
matrices.
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x− 3y= 1
2x− 7y= 3

a) x+ 2y= 1
3x+ 4y=−1

b)

2x+ 3y=−1
3x+ 4y= 2

c) 3x+ 4y= 1
4x+ 5y=−3

d)

b. x =−3, y = 2

d. x =−17, y = 13

Exercise 1.1.10 Find the solution of each of
the following systems of linear equations using aug-
mented matrices.

x+ y+ 2z=−1
2x+ y+ 3z= 0

− 2y+ z= 2

a) 2x+ y+ z=−1
x+ 2y+ z= 0

3x − 2z= 5

b)

b. x = 1
9 , y = 10

9 , z =−7
3

Exercise 1.1.11 Find all solutions (if any) of the
following systems of linear equations.

3x−2y= 5
−12x+8y=−20

a) 3x−2y= 5
−12x+8y= 16

b)

b. No solution

Exercise 1.1.12 Show that the system
x + 2y − z = a

2x + y + 3z = b
x − 4y + 9z = c

is inconsistent unless c = 2b−3a.

Exercise 1.1.13 By examining the possible posi-
tions of lines in the plane, show that two equations in
two variables can have zero, one, or infinitely many
solutions.

Exercise 1.1.14 In each case either show that the
statement is true, or give an example2 showing it is
false.

a. If a linear system has n variables and m equa-
tions, then the augmented matrix has n rows.

b. A consistent linear system must have infinitely
many solutions.

c. If a row operation is done to a consistent linear
system, the resulting system must be consis-
tent.

d. If a series of row operations on a linear system
results in an inconsistent system, the original
system is inconsistent.

b. F. x+ y = 0, x− y = 0 has a unique solution.

d. T. Theorem 1.1.1.

Exercise 1.1.15 Find a quadratic a+bx+cx2 such
that the graph of y= a+bx+cx2 contains each of the
points (−1, 6), (2, 0), and (3, 2).

Exercise 1.1.16 Solve the system
{

3x+ 2y= 5
7x+ 5y= 1

by changing variables
{

x= 5x′ − 2y′

y=−7x′ + 3y′
and solv-

ing the resulting equations for x′ and y′.

x′ = 5, y′ = 1, so x = 23, y =−32

Exercise 1.1.17 Find a, b, and c such that

x2−x+3
(x2+2)(2x−1) =

ax+b
x2+2 +

c
2x−1

[Hint: Multiply through by (x2 + 2)(2x −
1) and equate coefficients of powers of x.]

a =−1
9 , b =−5

9 , c = 11
9

Exercise 1.1.18 A zookeeper wants to give an an-
imal 42 mg of vitamin A and 65 mg of vitamin D
per day. He has two supplements: the first contains
10% vitamin A and 25% vitamin D; the second con-
tains 20% vitamin A and 25% vitamin D. How much

2Such an example is called a counterexample. For example, if the statement is that “all philosophers have
beards”, the existence of a non-bearded philosopher would be a counterexample proving that the statement is false.
This is discussed again in Appendix ??.
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of each supplement should he give the animal each
day?

Exercise 1.1.19 Workmen John and Joe earn a
total of $24.60 when John works 2 hours and Joe
works 3 hours. If John works 3 hours and Joe works
2 hours, they get $23.90. Find their hourly rates.

$4.50, $5.20

Exercise 1.1.20 A biologist wants to create a diet
from fish and meal containing 183 grams of protein
and 93 grams of carbohydrate per day. If fish con-
tains 70% protein and 10% carbohydrate, and meal
contains 30% protein and 60% carbohydrate, how
much of each food is required each day?
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